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a b s t r a c t

This paper deals with the problem of estimating the output-noise covariance matrix that is involved in
the localization of a mobile robot. The extended Kalman filter (EKF) is used to localize the mobile robot
with a laser range finder (LRF) sensor in an environment described with line segments. The covariances
of the observed environment lines, which compose the output-noise covariance matrix in the correction
step of the EKF, are the result of the noise arising from a range-sensor’s (e.g., a LRF) distance and angle
measurements. A method for estimating the covariances of the line parameters based on classic least
squares (LSQ) is proposed. This method is compared with the method resulting from the orthogonal
LSQ in terms of computational complexity. The results of a comparison show that the use of classic LSQ
instead of orthogonal LSQ reduce the number of computations in a localization algorithm which is a part
of a SLAM (simultaneous localization and mapping) algorithm. Statistical accuracy of both methods is
also compared by simulating the LRF’s measurements and the comparison proves the efficiency of the
proposed approach.

© 2009 ISA. Published by Elsevier Ltd. All rights reserved.
1. Introduction

The problem of robotic mapping and localization has been
widely studied. Here, a robot must know its own pose (the
localization problem) in order to build a map, and the robot also
needs to know the environment map (the mapping problem) to
localize itself to its current pose. The robot can localize itself
using odometric measurements and by comparing the local map,
obtained from the current view of the robot, with an already-
built global environment map. The problems of mapping and
localization can be handled separately if the robot’s pose is given
to the robot by a human or by using GPS (global positioning
system) and INS (Inertial Navigation System) sensors (outdoor
environments) when map building. The map of the environment
can then be used to solve the localization problem. To avoid
assuming that the robot’s pose is known a SLAM (simultaneous
localization and mapping) algorithm must be built, where the
problems of localization and mapping are merged. A SLAM
algorithm is known as a computationally very complex [1]
operation. To solve the SLAM problem a joint state composed of
a robot’s pose and the locations of observed stationary landmarks
(e.g., line segments) must be estimated. The observation-update
step requires that all the landmarks and the joint covariancematrix
be updated every time an observation is made [2]. This means
that the extent of the computation expands quadratically with
the number of landmarks in a map [2]. Many approaches [1]
have been developed to reduce this complexity and the associated

∗ Corresponding author. Tel.: +386 1 4768702; fax: +386 1 4264631.
E-mail address: luka.teslic@fe.uni-lj.si (L. Teslić).

0019-0578/$ – see front matter© 2009 ISA. Published by Elsevier Ltd. All rights reserv
doi:10.1016/j.isatra.2009.09.009
computation. In [3] a comprehensive survey of the SLAM
problem is presented, and in the literature, many approaches and
algorithms involved in solving the SLAM, localization andmapping
problem have been proposed [3–12]. In [13] a comparison of line-
extraction algorithms using a 2D laser range finder is reported.
Based on this comparison a split-and-merge algorithmwas chosen
in this paper, because of its speed and good correctness.
The Kalman-filtering technique is very often used to solve the

localization or SLAM problem. The convergence properties of the
Kalman filter and therefore the SLAM algorithm significantly de-
pend on setting the process’ input- and output-noise covariance
matrices. These matrices have to be appropriately set. In our pre-
vious work [14] a Kalman-Filtering-based localization algorithm
for a mobile robot with a LRF is presented and tested on a simu-
lator built in Matlab, where the input-noise covariance matrix of
the EKF is derived from the known noise variances of the angu-
lar velocity measurements of both robot wheels. However, this pa-
per focuses on a derivation of the output-noise covariance matrix
of the EKF and a method for estimating the line parameters’ co-
variances is proposed. In an environment described with line seg-
ments, covariances of the line-equation parameters compose the
output-noise covariancematrix of the EKF. Line segments are often
applied for environment representation and in papers [15–21] dif-
ferent methods are used to estimate the covariances of the normal
line-equation parameters. In this work a proposedmethod for esti-
mating these covariances is derived fromclassic least squares (LSQ)
and is computationally more efficient than the method resulting
from orthogonal LSQ. If the line parameters and their covariance
matrix are calculated from 8 to 200 points, the method resulting
from classic LSQ has in the noise case with nonzero or zero LRF’s
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Fig. 1. (a) The line parameters (pi, αi) according to the global coordinates, and the line parameters (ri, ψi) according to the robot’s coordinates. (b) Reflection point between
the laser–beam line and the environment line segment (wall).
angular variance about 4 to 5.6 or 3.4 to 4.7 times fewer opera-
tions than themethod resulting from orthogonal LSQ, respectively.
In the future, the localization algorithm shown in this paperwill be
extended into the SLAMalgorithm,where the samemethod as pro-
posed in this paper will be used for estimating the line parameters
and their covariances. Therefore, in this SLAM algorithm the com-
putational costs of calculating the line parameters and their covari-
ances will be the same as in the localization algorithm shown in
this paper. The statistical accuracy of each method is also analyzed
and both methods are compared. The accuracy of line parameters’
covariances estimated with the method resulting from classic LSQ
depends on the number of line-segment points from which these
covariances are estimated. The accuracy of the method resulting
fromorthogonal LSQdepends on the accuracy of the variance of the
LRF’s distance-measurement error and variance of the laser–beam
angle error which must be a priori given from a LRF’s noise model.
The standard deviations and the covariance of the line parameters
estimatedwith eachmethod are close to the statistically estimated
reference standard deviations and covariance in both noise cases
(zero and nonzero LRF’s angular variance).
This paper is organized as follows. In Section 2 the prediction

step and the correction step of the EKF are described first. Then
the methods for estimating the line parameters resulting from
classic and orthogonal LSQ are presented. Further, the proposed
method to estimate the line parameters’ covariances resulting
from classic LSQ and a method resulting from orthogonal LSQ are
presented. Then the computational complexities of both methods
are analyzed and compared to each other. In Section 3 the
statistical validation of the accuracy of both methods using the
simulated measurements of the LRF sensor is performed and the
accuracy of both methods is compared. The paper is concluded in
Section 4.

2. Estimation of the line parameters and their covariances for
the EKF

The extended Kalman filter (EKF) approach, which consists of a
prediction and a correction step, is adopted here for the purpose of
localization. In the localization algorithm presented in this paper
the parameters of the environment lines and their covariances
are needed in order to perform the correction step of the EKF. If
the localization algorithm shown in this paper is extended into
the SLAM algorithm, these line parameters and their covariances
must also be computed. The SLAM is according to [2] formulated
as follows. SLAM is a process by which a mobile robot can build
a map of an environment and at the same time use this map to
deduce its location. In SLAM, both the trajectory of themobile robot
and the location of all environment landmarks are estimated online
without the need for any a priori knowledge of a robot’s pose.

2.1. Prediction and correction step of the EKF

The robot’s pose is predicted by simulating the odometrymodel
f(.)
xp(k+ 1) = f(xp(k),u(k))+ n(k), (1)

where the state xp(k) = [xr(k), yr(k), ϕr(k)]T denotes the
robot pose with respect to the global coordinates (Fig. 1a) and u(k)
denotes the input vector to the odometry model (e.g., velocities of
the robot’s left- and right-hand wheel). Vector n(k) denotes the
noise capturing the uncertainties of the odometric model and is
modeled [16,19] as zero mean and Gaussian noise with covariance
matrix Q(k) (2). In [22,23,19,18,24] some odometry models and
statistical models for the odometry error are presented. The
prediction step of the EKF is performed as follows

x̃p(k+ 1) = f(x̂p(k),u(k)),
P̃(k+ 1) = A(k+ 1)P̂(k)AT(k+ 1)+ Q(k),

Aij(k+ 1) =
∂fi

∂xp j(k)

∣∣∣∣
(x̂p(k),u(k))

,
(2)

where x̂p(k)denotes the state estimate at time instant k obtained in
the last correction step of the EKF and P̂(k) denotes the covariance
matrix of the corresponding estimation error. x̃p(k+1) denotes the
state prediction and P̃(k+ 1) denotes the covariance matrix of the
state-prediction error.
The robot’s pose is corrected by minimizing the difference

between the line parameters of the local environment map and
the line parameters of the global map, transformed into the
robot’s coordinates. The global environmentmap composed of line
segments is a priori known to the robot. The robot then builds a
local environment map, which is also composed of line segments,
from the current LRF scan.
The global environment map is composed of a set of line

segments described with the edge points and line parameters αi
and pi of the line equation in normal form based on the global
coordinates xG cosαi + yG sinαi = pi. The line segments of the
current environment scan are merged in a local map, and are
described with the edge points and parameters ψi and ri (Fig. 1a)
of the line equation in normal form, according to the robot’s
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coordinates
xR cosψi + yR sinψi = ri. (3)

The line segments in the globalmap,which correspond to the same
environment line segments (e.g., a wall) as the line segments of
the local map, must be found. The matching strategy is adopted
from [16] and some other matching approach can be found
in [15,24]. Each line segment of the local map is through the
overlapping rate compared to all of the line segments of the global
map transformed into the robot’s coordinates according to the
prediction of the robot’s pose. If the overlapping rate between the
most similar local and global line segment is below the threshold,
the line segments are paired. The matching line parameters ψi
and ri from the current local map are collected in vector z(k) =
[r1, ψ1, . . . , rN , ψN ]T, which is used as the input for the correction
step of the EKF to update the vehicle’s state. The parameters pi and
αi of the matching line segment from the global map (according to
the global coordinates) are transformed into the parameters r̂i and
ψ̂i (according to the coordinates of the robot) by

Ci = pi − x̃r (k+ 1) cos(αi)− ỹr (k+ 1) sin(αi),[
r̂i
ψ̂i

]
= µi(x̃p(k+ 1), pi, αi)

=

[
|Ci|

αi −
(
ϕ̃r (k+ 1)−

π

2

)
+ (−0.5 · sign(Ci)+ 0.5)π

]
,

(4)

where x̃p(k+ 1) (2) denotes the prediction of the robot’s pose and
the operator |.| denotes the absolute value. The output model of
the process (1) can then be defined by the vector

µ(x̃p(k+ 1))
=
[
µ1(x̃p(k+ 1), p1, α1), . . . , µN(x̃p(k+ 1), pN , αN)

]T
.

(5)

The correction step of the EKF is performed as follows

K(k+ 1) = P̃(k+ 1)HT(k+ 1)(H(k+ 1)P̃(k+ 1)HT(k+ 1)

+R(k+ 1))−1,

P̂(k+ 1) = P̃(k+ 1)− K(k+ 1)H(k+ 1)P̃(k+ 1),

Hij(k+ 1) =
∂µi

∂ x̃p j(k+ 1)

∣∣∣∣
x̃p j(k+1)

,

(6)

x̂p(k+ 1) = x̃p(k+ 1)+ K(k+ 1)(z(k+ 1)− µ(x̃p(k+ 1))). (7)
When applying the EKF, the noise arising from the LRF’s distance
and angle measurements affects the line parameters z(k) =
[r1, ψ1, . . . , rN , ψN ]T of the localmap. The covariancematrix of the
vector z(k) is the output-noise covariance matrix R(k + 1) of the
EKF and has a block-diagonal structure, where i-th block

Ri(k+ 1) =
[
var(ri) cov(ri, ψi)

cov(ψi , ri) var(ψi)

]
(8)

represents the covariance matrix of the line parameters (ri, ψi).
The R(k+1)matrix is as in [16] block diagonal, since it is assumed
that there is no correlation between the estimated parameters ri
and ψi representing different environment line segments. In the
following sections the formulas to define the Ri(k+ 1) covariance
matrix are given.

2.2. Identification of the line parameters

The line segments are extracted from the laser range finder’s
(LRF) reflection points. The LRF in each environment scan (Fig. 1b)
gives the set of distances ds = [ds0◦ , . . . , ds180◦ ] to the obstacles
(e.g., a wall) at the angles θs = [0◦, . . . , 180◦]. The Sick LMS200
laser range finder, which is very often used in mobile robotics, is
also taken into consideration in this paper. The LRF consists of a 1D
laser range measurement device and a constantly rotating mirror
with a rotation speed of 75 Hz. This LRF has according to the Sick
LMS200 technical description [25] the following characteristics. It
has a selectable scanning angle (field of vision) of 100◦ or 180◦
at selectable angular resolutions of 0.25◦ (100◦ scanning angle
only), 0.5◦ and 1◦, with the times for scanning one cycle 53.3 ms
(100◦ scanning angle only), 26.6ms and 13.13ms, respectively. The
maximum measurement distances are 8 m in the mm- mode and
80 m in the cm-mode, with a measurement resolution of 10 mm
and typical measurement accuracy of ±35 mm. The systematic
error in the mm-mode is typically ±15 mm at a range of 1 to 8 m
and in the cm-mode it is typically ±40 mm at a range 1 to 20 m.
The statistical error in the mm-mode is typically 5 mm at a range
of≤ 8 m. When the vehicle moves while scanning, the movement
imposes a distortion on individual points of each environment
scan. This effect is non-negligible for lowmirror speeds and in [26]
it is shown how each time when a new environment scan arrives,
it gets immediately compensated by reading out the odometry. As
in [27] it is assumed that this effect is negligible, due to using a SICK
LMS200 laser range finder, which has high mirror speed (75 Hz).
This assumption is however justified only when the robot moves
with a low translational and rotational speed [27], e.g. a fewmeters
per second.
All the consecutive points

xscan(m) = ds(m) cos θs(m), yscan(m) = ds(m) sin θs(m),

m = 1, . . . ,Np, (9)
by which the reflections have occurred (ds(m) ≤ RLRF) are
clustered; the other points (ds(m) > RLRF) are ignored, where
RLRF denotes the range of the LRF (e.g., 80 m). Each cluster is
then split into more clusters if the distance between the two
consecutive points is greater than the threshold, which in a
particular environment is set according to the expected smallest
distance (e.g., 15 cm) required to distinguish between twodifferent
consecutive line segments. If there is less than Nmin points in
a cluster, the cluster is ignored. Nmin is a minimum number
of scan points for a line segment (e.g., Nmin = 5). 2 points
already define a line, but due to the LRF’s noise more points must
be taken into account to reliably describe the environment line
segment with the calculated line segment. Each cluster is then
splitwith the split-and-merge algorithm [13,24] in the consecutive
sets of scan points, where each set of points (x, y) corresponds
to a certain environment line segment. If there are less than
Nmin = 5 points that correspond to certain environment line
segment, the set of line segment (x, y) points is again discarded.
According to a comparison of line-extraction algorithms using a
2D LRF done in [13], the split-and-merge algorithm is fast and
has good correctness. Besides the line parameters the edge points
of the line segments can also be computed, when using this
algorithm. The line parameters are very often computed using
the Hough transform [15,28–30]; however, this is computationally
more expensive and the result of the Hough transform does not
include the edge points of the line segments, which is important
information for localization and map building.
Each set of line-segment points (x, y) is reduced to the

parameters ψ and r (Fig. 1a) of the line equation in normal form,
according to the robot’s coordinates (3) and to the edge points of
the line segment. If the set of points (x, y) belongs to a vertical
line segment, the line parameters cannot be computed in the least-
square sense directly. The reason is that the result of the least-
squares method is the parameters of an explicit line equation. In
this form the vertical line causes the estimated slope-parameter to
go to infinity. To obtain the best fit of the lest-square estimated
line parameters to the given set of data (x, y), the slope of the
line is estimated first. This slope is estimated from the edge points
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(Tax, Tay) and (Tbx, Tby) of the set (x, y). If the absolute value of
the slope is greater than 1
|Tay − Tby| > |Tax − Tbx|, (10)
all the points (x, y) are rotated by −π

2 to have a well-conditioned
LSQ estimation problem. This is done by exchanging the vector x
with the vector y, and the vector y with the vector −x. The set of
line-segment points (x, y) is then reduced into the parameters r
andψ of the line equation in normal form according to the robot’s
coordinates (3) as follows

y = [y(1), . . . , y(n)]T, U =
[
x(1) · · · x(n)
1 · · · 1

]T
,

θ̂ = [k̂l, ĉl]T = (UTU)−1UTy, (11)

r(kl, cl) =
cl√
k2l + 1

sign(cl),

ψ(kl) = arctan 2

 sign(cl)√
k2l + 1

,
−kl√
k2l + 1

sign(cl)

 , (12)

where n denotes the number of points that corresponds to the line
segment. k̂l and ĉl are parameters of the explicit line equation yR =
kl ·xR+ cl, estimatedwith the classic LSQmethod. Both parameters
are then converted into the parameters r(k̂l, ĉl) and ψ(k̂l) (12) of
the line equation in normal form, where the function arctan 2 is
a four quadrant arctan function. If condition (10) is satisfied, all
the points corresponding to the line segment were rotated for−π

2 .
In this case π

2 must be added up to the calculated angle ψ (12)
to get the right line parameter. The calculated parameter r which
denotes the distance of line to the coordinate-frame origin (Fig. 1a)
is invariant to the rotation of line-segment points and therefore
remains unchanged.
The line parameters ri and ψi (Fig. 1a) of the line equation in

normal form (3) can also be computed with the very often used
orthogonal least-squares method [16]. The parameters r∗ and ψ∗

minimizing the cost function E(r, ψ) =
∑N
i=1(r − x(i) cos(ψ) −

y(i) sin(ψ))2 are calculated with the function f = [f1, f2][
r∗

ψ∗

]
=

x̄ cos(ψ∗)+ ȳ sin(ψ∗)1
2
arctan

(
−2Sxy
Sy2 − Sx2

) 
,

[
f1(x(1), y(1), . . . , x(n), y(n))
f2(x(1), y(1), . . . , x(n), y(n))

]
. (13)

x̄ =

n∑
j=1

x(j)

n
, ȳ =

n∑
j=1

y(j)

n
, Sx2 =

n∑
j=1

(x(j)− x̄)2,

Sy2 =
n∑
j=1

(y(j)− ȳ)2, Sxy =
n∑
j=1

(x(j)− x̄)(y(j)− ȳ).

(14)

2.3. Estimation of line parameters’ covariances

Besides the line parameters ri andψi (12), the variances of both
parameters and the covariances between them, which compose
the covariance matrix of vector [ri, ψi]

C =
[
var(r) cov(r, ψ)
cov(ψ, r) var(ψ)

]
, (15)

must be computed in order to perform the correction step of the
EKF. The variances and covariances must be taken into account,
since the noise of the range-sensor (e.g., a LRF) readings ds(m) and
θs(m) affects both of the extracted line parameters.
A method for estimating the line parameters’ covariances
resulting from classic LSQ is proposed here. The covariance matrix
of the line parameters’ vector [kl, cl]must be calculated first. The
error between the yR coordinates of the line-segment points (x, y)
and the estimated line arises from the noise of the LRF. Assuming
that this error is white noise, the covariance matrix of the line
parameters’ vector [kl, cl] can be calculated according to the least-
squares theory by

Ce = var(y(j))(UTU)−1 =
[
var(kl) cov(kl, cl)
cov(cl, kl) var(cl)

]
, (16)

var(y(j)) =

n∑
j=1
(y(j)− ŷ(j))2

n− 1
, ŷ(j) = k̂l · x(j)+ ĉl, (17)

where var(y(j)) is the vertical-error variance of the points
(x(j), y(j)) (j = 1, . . . , n) according to the estimated line
with parameters k̂l and ĉl. Because ŷ(j) is calculated out of
x(j) coordinate, variance var(y(j)) is calculated out of both
(x(j), y(j)) cartesian coordinates of the LRF’s points. Since these
two coordinates are calculated as (ds(j) cos θs(j), ds(j) sin θs(j))
(9), the uncertainties of the LRF’s range and angle measurements
(ds(j), θs(j)) are both incorporated in vertical error variance
var(y(j)). Knowing the variances and covariances between the
parameters kl and cl the variances and covariances between the
parameters r andψ can be approximated by a second-order Taylor
expansion of the Eqs. (12)

1r ≈
∂r(k̂l, ĉl)
∂kl

1kl +
∂r(k̂l, ĉl)
∂cl

4cl, 1ψ ≈
∂ψ(k̂l)
∂kl

1kl, (18)

where 1cl, 1kl, 1r and 1ψ are deviations in a neighborhood of
the values k̂l, ĉl, r and ψ , respectively. The partial derivatives are

Krk =
∂r(k̂l, ĉl)
∂kl

=
−ĉlk̂l√

k̂2l + 1(k̂
2
l + 1)

sign(ĉl),

Krc =
∂r(k̂l, ĉl)
∂cl

=
sign(ĉl)√
k̂2l + 1

, Kψk =
∂ψ(k̂l)
∂kl

=
1

k̂2l + 1
,

(19)

where in the derivation of the Kψk the partial derivation
∂ arctan | sinψ(kl)|

|cosψ(kl)|
∂kl

=
∂ arctan 1

|kl |
∂kl

and the definition of the four quadrant
arctan 2 function is considered. Considering the approximations
of 1r and 1ψ (18) and the statistical properties of the random
variables the estimations of the variances and covariances between
the line parameters r and ψ are derived as follows

var(ψ) = K 2ψkvar(kl),
var(r) = K 2rkvar(kl)+ K

2
rcvar(cl)+ 2KrkKrc · cov(kl, cl),

cov(r, ψ) = KrkKψkvar(kl)+ KrcKψk · cov(kl, cl),
cov(ψ, r) = cov(r, ψ).

(20)

If condition (10) is satisfied all the line-segment points are
rotated for the angle −π

2 . Then the parameters r and ψ (12)
and their covariances (20) are calculated. To get the right line
parameter, π2 must be added up to the calculated angle ψ (12).
The calculated parameter r denotes the distance of the line to the
coordinate-frame origin (Fig. 1a). The parameter is invariant to the
rotation of line-segment points and therefore remains unchanged.
Therefore the variance of parameter r also remains unchanged and
equals the already calculated var(r) in Eq. (20). The variance of
the right angle var(ψ + π

2 ) equals the already calculated variance
var(ψ) (20), since var(π2 ) = 0. And the covariance covar(r, ψ+

π
2 )

equals the already calculated covariance covar(r, ψ) (20), since
covar(r, π

2 ) = 0.
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If the line parameters ri and ψi (Fig. 1a) of the line equation in
normal form (3) are calculated using the orthogonal least-squares
method (13) and (14), then the covariance matrix of the line
parameters (15) can be, as shown in [16], calculated as follows

C∗ =
n∑
j=1

(AjBj)Cmj(AjBj)
′, (21)

Cmj =

[
σ 2dj σdj θj

σθj dj σ 2θj

]
,

Bj =


∂g1
∂ds(j)

∂g1
∂θs(j)

∂g2
∂ds(j)

∂g2
∂θs(j)

 = [cos θs(j) −ds(j) sin θs(j)
sin θs(j) ds(j) cos θs(j)

]
, (22)

Aj =


∂ f1
∂x(j)

∂ f1
∂y(j)

∂ f2
∂x(j)

∂ f2
∂y(j)

 ,
[
x(j)
y(j)

]
=

[
ds(j) cos(θs(j))
ds(j) sin(θs(j))

]
,

[
g1(ds(j), θs(j))
g2(ds(j), θs(j))

]
, (23)

where Cmj denotes the covariance matrix of a point in the polar
coordinates [ds(j), θs(j)], which is a raw sensor measurement
(e.g., a LRF). The polar coordinates [ds(j), θs(j)] are transformed
(23) to cartesian coordinates [x(j), y(j)] by the relations g1 and
g2. These transformations are linearized according to the polar
coordinates to obtain the matrix Bj. Aj is the Jacobian matrix of
f = [f1, f2] according to the cartesian coordinates. The partial
derivatives from the Aj matrices are shown in [16].

2.4. Estimation of the computational complexity

To solve the localization or SLAM problem the vectors of the
two line parameters [ri, ψi] and their covariancematricesmust be
calculated every time an observation is made with a range sensor
for all the observed environment line segments. Both, SLAM and
localization algorithm, must run in real time. SLAM is known as
a computationally much more complex algorithm. Therefore, the
computational efficiency of the same algorithms that are used in
a SLAM and a localization algorithm plays more important role
in SLAM than in the localization algorithm. The proposed method
for estimating the covariances of the observed line parameters
resulting from the classic LSQ method and the method resulting
from orthogonal LSQ [16] were described.
The computational complexity of both methods will be

compared relative to each other. The computational complexity
of both methods is analyzed by counting up all the elementary
mathematical operations involved in the calculation of the line
parameters r and ψ (12) and their covariance matrix C (15).
These operations are addition, subtraction,multiplication, division,
square rooting and the trigonometric functions cosine, sine and
arctan. The elementary operations in the same terms that are used
a number of times are counted only once. The algorithms used
to perform the multiplication, division and square-root operations
are optimized on modern computers to reach the time complexity
of the addition and subtraction. For this reason all these elementary
operations are counted up together for each method. The time
of calculating the cosine, sine and arctan functions and the time
to perform the multiplication operation in a C++ language were
measured on laptop computer. Measurements have shown that
calculating the cosine or sine function is about 4 times longer
than performing the multiplication operation. Calculating the
arctan function is about 8 times longer than the multiplication
operation. Each cosine or sine calculation can then be denoted as
Table 1
Computational costs of the method resulting from orthogonal LSQ in the case of
nonzero and zero LRF’s angular variance σ 2θj .

Neq

Bj matrices n times (22) 11n/8n
Aj matrices n times (23) 18n+ 19
(AjBj)Cmjn times (21) 16n / 8n
(AjBjCmj ) ∗ (AjBj)

′n times (21) 9n
n− 1 matrix additions (21) 3n− 3
x̄, ȳ, Sx2 , Sy2 , Sxy (14) 12n− 3
r∗, ψ∗ (13) 23

Overall computational costs Cols1(n) = 69n+ 36/
Cols2(n) = 58n+ 36

4 multiplications and each arctan calculation can be denoted as 8
multiplications in terms of the time complexity.
First, the computational complexity of the method resulting

from the orthogonal LSQ is examined. In Table 1 are shown the
computational costs of all the terms involved in the calculation
of the line parameters r and ψ (13) and their covariance matrix
C∗ (21). Neq denotes the equivalent number of operations, that
are necessary to calculate certain mathematical term, taking
into account that each cosine (sine) calculation or each arctan
calculation is equivalent to 4 or 8 multiplications, respectively.
The computational costs obviously depend on the number of
line-segment points n. The covariance matrix of a point in the
polar coordinates Cmj should be a priori given from a LRF’s noise
model. The covariances between the LRF’s distance and angle
measurement σdjθj and σθjdj (22) are here set to zero, since it is as
in [19] assumed that there is no correlation between the distance
and angle measurement at the LRF sensors. The error on the LRF’s
beam-angle θs(j) is in some papers neglected [20,31,17], whereas
in some papers it is considered [24,19,18,16]. Thus, here two cases
of setting the variance of the LRF’s beam angle σ 2θj are considered:
the noise case with nonzero σ 2θj and the noise-free case with zero
variance σ 2θj = (0 rad)2. If the computational cost of some term
is in the noise-free case different than in the noise-case, then the
computational cost before the sign ‘/’ (Table 1) refers to the noise
case and the cost behind the sign ‘/’ refers to the noise-free case.
Since the covariances σdjθj and σθjdj in thematrices Cmj equals zero,
the upper-right and the lower-left terms in the matrix products
(AjBjCj) ∗ (AjBj)′ (21) are equal. In the computational cost of the
product (AjBjCj) ∗ (AjBj)′ (21) (Table 1) is therefore considered
that only one of this two terms is calculated. Since the covariances
covar(r, ψ) = C∗(1, 2) and covar(ψ, r) = C∗(2, 1) are equal, in
the computational costs of the n−1 additions of 2×2matrices (21)
(Table 1) it is considered that only one of the two terms C∗(1, 2)
and C∗(2, 1) is calculated. Cols1(n) and Cols2(n) denote the overall
computational costs of the method resulting from orthogonal LSQ
in the noise cases,with nonzero and zero LRF’s angular varianceσ 2θj ,
respectively. Cols1(n) and Cols2(n) are obtained by summing up the
equivalent numbers of computations (Neq) of all the mathematical
terms shown in Table 1.
In Table 2 are shown the computational costs of the method

resulting from classic LSQ. At the computational costs of the term
UTU (16) it is considered that this matrix product can be written as

UTU =


n∑
j=1

x(j)2
n∑
j=1

x(j)

n∑
j=1

x(j) n

 , (24)

where the upper-right and the lower-left terms are equal. It is
considered that the 2 × 2 matrix inversion in the term Ce =
var(y(j)) ∗ (UTU)−1 (16) is calculated analytically with cofactors
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Fig. 2. The relative computational complexities Cr1(n) = Cols1(n)
Cls(n)

and Cr2(n) =
Cols2(n)
Cls(n)

as a function of the number of line-segment points n ≥ 6.

Table 2
Computational costs of the method resulting from classic LSQ.

Neq

var(y(j)) (17) 5n+ 1
Matrix productUTU (16) 3n− 2
var(y(j)) ∗ (UTU)−1 (16) 10
Krk , Krc , Kψk (19) 10
var(ψ), var(r), cov(r, ψ) (20) 16
(UTU)−1UTy (11) 4n+ 4
r, ψ (12) 13

Overall computational costs Cls(n) = 12n+ 52

and determinant and that covariances cov(cl, kl) = Ce(2, 1) and
cov(kl, cl) = Ce(1, 2) are equal. In the computational costs of the
term Ce = var(y(j)) ∗ (UTU)−1 (16) is therefore considered that
only one of the upper-right and lower-left termof thematrix inver-
sion (UTU)−1 is calculated andmultipliedwith variance var(y(j)). If
condition (10) is satisfied, each line segment point (x(j), y(j)) (j =
1, . . . , n) was replaced with rotated point (y(j), −x(j)). That takes
n subtractions which is in Table 2 considered in the computational
cost of calculating the term (UTU)−1UTy (11). In the computational
cost of the line parameters r andψ (12) the worst case of calculat-
ing the arctan 2(ya, xa) function (π−arctan(

|ya|
|xa|
))∗sign(ya) is con-

sidered. If condition (10) is satisfied, then π
2 must be added to the

calculated angleψ (12), which is also considered in this cost. Cls(n)
(Table 2) denote the overall computational costs of the method re-
sulting from the classic LSQ.
The computational complexities of bothmethods are compared

relative to each other by

Cr1(n) =
Cols1(n)
Cls(n)

=
69n+ 36
12n+ 52

,

Cr2(n) =
Cols2(n)
Cls(n)

=
58n+ 36
12n+ 52

,

(25)

where the relative computational complexities Cr1(n) and Cr2(n)
refer to the the noise cases with nonzero and zero LRF’s angular
variance σ 2θj , respectively. Fig. 2 shows the relative computational
complexities Cr1(n) and Cr2(n) as a function of the number of line-
segment points n ≥ 6. If the line parameters and their covariance
matrix are calculated from 8 to 25 points or 25 to 200 points,
the method resulting from classic LSQ has in the noise case with
nonzero LRF’s angular variance σ 2θj about 4 to 5 times or 5 to 5.6
Table 3
Three environment line segments, which correspond to n = 36 LRF’s points.

re1 = 2 m, ψe1 =
π
2 rad, θs(j): 60◦, 61◦, . . . , 95◦

re2 = 50 m, ψe2 = 130 π
180 rad, θs(j): 80◦, 81◦, . . . , 115◦

re3 = 10 m, ψe3 = 170 π
180 rad, θs(j): 97◦, 98◦, . . . , 132◦

times fewer operations than themethod resulting from orthogonal
LSQ, respectively. The computational costs of themethod resulting
from orthogonal LSQ are in the noise case with zero LRF’s angular
varianceσ 2θj = (0 rad)

2 somewhat lower. If the line parameters and
their covariance matrix are calculated from 9 to 50 points or 50 to
200 points, the method resulting from classic LSQ has in this noise
case about 3.5 to 4.5 times or 4.5 to 4.7 times fewer operations
than the method resulting from orthogonal LSQ, respectively.
To solve the localization or SLAM problem the vectors of

the two line parameters [ri, ψi] and their covariance matrices
must be calculated in each environment scan for all the observed
environment line segments. It was shown that the use of
classic LSQ instead of orthogonal LSQ reduces the number of
computations in the process of estimating the two normal line-
equation parameters and their covariancematrix. Exactly the same
algorithms for calculating these line parameters and covariance
matrices that can be applied in a localization algorithm would
then also be applied in a SLAM algorithm, which is extended
out of the localization algorithm. The reduction of the number of
computations (if using classic LSQ instead of using orthogonal LSQ)
would therefore be in the SLAM algorithm exactly the same (from
the absolute point of view) as in the localization algorithm.

3. Statistical validation of both methods

The correctness of both methods for estimating the covariance
matrix of line parameters will be compared using statistical anal-
ysis. Three different environment line segments are simulated in
Matlab. They are defined with the normal line equation parame-
ters (rei, ψei; i = 1, 2, 3) (Tables 3–5) and laser beam angles θs(j),
at 1◦ resolution. Line segments are extracted out of n = 36 points.
To test both methods for estimating the covariance matrix the

following LRF’s noise is assumed
θs(j) = θ(j)+ N(0, σθj), ds(j) = d(j)+ N(0, σdj), (26)

where θ(j) denotes the true laser–beam angle and N(0, σθj)
denotes and the normally distributed noise with zero mean and
variance of the laser–beam angle error σ 2θj . d(j) is the true distance
between the LRF sensor and the simulated environment line
segment at the true LRF’s beam angle θ(j). N(0, σdj) denotes the
normally distributed noise with zero mean and variance of the
LRF’s distance-measurement error σ 2dj . The covariance between the
LRF’s distance and angle measurement σdjθj (22) is in this model
and in the following experiments set to zero, since it is as in [19]
assumed that there is no correlation between the distance and
angle measurement at the LRF sensors.
As already mentioned the error on the LRF’s beam-angle θs(j)

is in some papers neglected [20,31,17], whereas in some papers
it is considered [24,19,18,16]. Thus, here two cases of setting the
standard deviation of the LRF’s beam angle σθj are considered: the
noise case with σθj = 0.0017 rad (Table 5) and the noise-free case
with σθj = 0 rad (Table 4). The standard deviation of the LRF’s
distance-measurement error is set to σdj = 30 mm (Tables 4 and
5), which is comparable to the distance–measurement error of the
LRF used. It is assumed here that the standard deviations σdj and
σθj of all the line-segment points are equal.
Experiments for estimating the line parameters from the LRF’s

points by using the classic LSQ (cLSQ) and the orthogonal LSQ
(oLSQ) methods are repeated many times (e.g., Ntr = 10 000)
for each of the three environment line segments and both noise
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Table 4
Comparison of the accuracy of the method resulting from classic (cLSQ) and orthogonal LSQ (oLSQ) considering zero LRF’s angular noise (σθj = 0 rad), where three different
environment line segments (rei , ψei; i = 1, 2, 3) are simulated.

re1, ψe1 re2, ψe2 re3, ψe3
cLSQ oLSQ cLSQ oLSQ cLSQ oLSQ

σru (mm) 7.8 7.9 11.9 11.9 7.9 7.9
mean(σr ) (mm) 7.3 7.5 11.0 11.5 7.2 7.9
std(σr ) (mm) 0.9 0.9 1.4 1.4 1.0 1.0
a-priori : mean(σr ) (mm) 7.4 7.7 11.2 11.8 7.4 8.0
a-priori : std(σr ) (mm) 0.2 0.2 9× 10−4 0.001 0.006 0.006

σψu (rad) 0.012 0.012 3× 10−4 3× 10−4 4× 10−4 4× 10−4

mean(σψ ) (rad) 0.012 0.012 3× 10−4 3× 10−4 4× 10−4 4× 10−4

std(σψ ) (rad) 0.001 0.001 4× 10−5 4× 10−5 6× 10−5 5× 10−5

a-priori : mean(σψ ) (rad) 0.012 0.012 3× 10−4 3× 10−4 4× 10−4 4× 10−4

a-priori : std(σψ ) (rad) 8× 10−5 8× 10−5 10−7 10−7 4× 10−7 4× 10−7

cov(ru, ψu) (mm rad) −0.076 −0.077 −0.003 −0.003 −0.003 −0.003
mean(cov(r, ψ)) (mm rad) −0.068 −0.071 −0.003 −0.003 −0.003 −0.003
std(cov(r, ψ)) (mm rad) 0.017 0.018 8× 10−4 8× 10−4 7× 10−4 7× 10−4
a-priori : mean(cov(r, ψ)) (mm rad) −0.070 −0.073 −0.003 −0.003 −0.003 −0.003
a-priori : std(cov(r, ψ)) (mm rad) 0.003 0.003 10−6 10−6 5× 10−6 5× 10−6
Table 5
Comparison of the accuracy of the method resulting from classic (cLSQ) and orthogonal LSQ (oLSQ) considering nonzero LRF’s angular noise (σθj = 17 × 10

−3 rad), where
three different environment line segments (rei , ψei; i = 1, 2, 3) are simulated.

re1, ψe1 re2, ψe2 re3, ψe3
cLSQ oLSQ cLSQ oLSQ cLSQ oLSQ

σru (mm) 7.7 7.7 26.9 26.9 15.6 15.6
mean(σr ) (mm) 7.3 / 28.7 / 14.4 /
std(σr ) (mm) 0.9 / 4.0 / 2.0 /
a-priori : mean(σr ) (mm) 7.5 7.7 29.5 26.9 14.8 15.5
a-priori : std(σr ) (mm) 0.2 0.2 0.1 0.1 0.01 0.02

σψu (rad) 0.012 0.012 9× 10−4 9× 10−4 0.001 0.001
mean(σψ ) (rad) 0.012 / 8× 10−4 / 8× 10−4 /
std(σψ ) (rad) 0.001 / 10−4 / 10−4 /
a-priori : mean(σψ ) (rad) 0.012 0.012 8× 10−4 9× 10−4 8× 10−4 0.001
a-priori : std(σψ ) (rad) 7× 10−5 8× 10−5 3× 10−7 6× 10−7 2× 10−6 1×10−6

cov(ru, ψu) (mm rad) −0.074 −0.075 −0.023 −0.023 −0.015 −0.015
mean(cov(r, ψ)) (mm rad) −0.068 / −0.022 / −0.011 /
std(cov(r, ψ)) (mm rad) 0.017 / 0.006 / 0.003 /
a-priori : mean(cov(r, ψ)) (mm rad) −0.070 −0.074 −0.022 −0.023 −0.011 −0.015
a-priori : std(cov(r, ψ)) (mm rad) 0.003 0.003 5× 10−5 7× 10−5 4× 10−5 4×10−5
cases. The line parameters ru and ψu (u = 1, . . . ,Ntr ) calculated
by cLSQ (11), (12) and oLSQ method (13) and (14) slightly differ
in each experiment due to the influence of the LRF’s noise (26).
The standard deviations of both line parameters and the covariance
between them are calculated for both methods by

σru =

√√√√ 1
Ntr

Ntr∑
u=1

(ru − rei)2, σψu =

√√√√ 1
Ntr

Ntr∑
u=1

(ψu − ψei)2,

cov(ru, ψu) =
1
Ntr

Ntr∑
u=1

(ru − rei) ∗ (ψu − ψei); i = 1, 2, 3,

(27)

and are shown in Tables 4 and 5. These statistically obtained
standard deviations and covariances are taken as a reference for
a comparison of the accuracy of the already-describedmethods for
calculating the variances and the covariance of the line parameters
from one set of line-segment points.
First, the standard deviations σr =

√
var(r), σψ =

√
var(ψ)

and the covariance covar(r, ψ) are calculated with the method
resulting from classic LSQ (20). Here, the vertical-error variance
var(y(j)) (16) is calculated from the LRF’s points, as shown in (17). If
this variance is estimated from a very small (e.g., 5) number of line-
segment points, the estimation is not very accurate. If an accurate
variance of the LRF’s distance-measurement error σ 2dj and variance
of the laser–beam angle error σ 2θj are given from a LRF’s noise
model, a better estimation of the vertical-error variance var(y(j))
can be calculated by

var(y(j)) =
1
n

n∑
j=1

(σdj sin θs(j)+ (yp(j)− yσd(j)))
2

+
1
n

n∑
j=1

(1dσθ (j) sin θs(j)+ (yp(j)− yσθ (j)))
2, (28)

xp(j) =
r cos θs(j)

cosψ cos θs(j)+ sinψ sin θs(j)
,

yp(j) =
r sin θs(j)

cosψ cos θs(j)+ sinψ sin θs(j)
,

yσd(j) =
r − (xp(j)+ σdj cos θs(j)) cosψ

sinψ
,

(29)

1dσθ (j) =
√
x2p(j)+ y2p(j)−

√
x2pσθ (j)+ y2pσθ (j) (30)

where P1 = (xp(j), yp(j)) (Fig. 3) is the intersection between
the j-th laser–beam line with the equation yR = tan θs(j)xR and
the environment line with the parameters r and ψ (3). yσd(j) is
the yR coordinate of the point on the environment line (r , ψ)
at xp(j) + σdj cos θs(j) coordinate (Fig. 3). σ

2
dj
is the variance of

the distance of each LRF’s point from the real-environment line
segment in the direction of a certain LRF’s beam. (σdj sin θs(j) +
(yp(j) − yσd(j)))2 is the variance of the distance of the j-th LRF’s
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Fig. 3. Estimating the vertical-error variance var(y(j)) from an a priori known LRF’s
distance and angular variance σ 2dj and σ

2
θj
.

point from the estimated environment line segment (r , ψ) in
a vertical direction. This variance depends on the the standard
deviation of the LRF’s distance measurement σdj , the laser–beam
angle θs(j) and the slope of the estimated line ψ . Since the
environment line was estimated from n LRF’s points (ds(j), θs(j)),
all of these n variances that refer to a certain angle θs(j) are
averaged (28) to obtain the relevant part of the vertical-error
variance var(y(j)), which corresponds to the error on distances
ds(j). P2 = (xpσθ (j), ypσθ (j)) (Fig. 3) is the intersection between
the j-th laser–beam linewith the equation yR = tan(θs(j)+σθj)∗xR
and the environment line with the parameters r and ψ (3). yσθ (j)
is the yR coordinate of the point on the environment line (r , ψ)
at xp(j) + 1dσθ (j) cos θs(j) coordinate (Fig. 3). The laser–beam
angular noise with standard deviation σθj is here considered
as error on the distance measurement ds(j) with the standard
deviation1dσθ (j) (30), since in the algorithm the laser–beamangle
θs(j)(0◦, . . . , 180◦), not the true laser beam angle θ(j), is used.
In Eq. (30) the point P1 = (xp(j), yp(j)) (Fig. 3) corresponds
to the laser–beam angle θs(j) and point P2 = (xpσθ (j), ypσθ (j))
corresponds to the angle θ(j) + σθj . (1dσθ (j) sin θs(j) + (yp(j) −
yσθ (j)))2 is the transformation of the standard deviation 1dσθ (j),
which is in the direction of the j-th laser beam, to a variance in
the vertical direction with regard to the estimated environment
line segment (r, ψ) (Fig. 3). This variance depends on the standard
deviation of the laser–beam angular noise σθj , the laser–beam
angle θs(j) and the slope of the estimated line ψ . All of these n
variances that refer to a certain angle θs(j) are averaged to obtain
the relevant part of the vertical error variance var(y(j)), which
corresponds to the error on the laser–beam angle θs(j). If condition
(10) is satisfied all the line-segment points were rotated for the
angle−π

2 . LRF’s beam angles θs(j)must then be replaced with the
rotated angles θs(j) − π

2 in Eqs. (28) and (29). The estimated line
parameter ψ must also be replaced with the rotated parameter
ψ − π

2 in these equations. The accuracy of the vertical-error
variance var(y(j)) estimation (28) depends on the accuracy of the
LRF’s variances σ 2dj and σ

2
θj
estimation. More accurate estimation

of the variance var(y(j)) (16) yields a better estimation of the
line parameters’ variances var(r) (20), var(ψ) and the covariance
cov(r, ψ). The variance of each LRF’s distance-measurement error
σ 2dj and variance of each laser–beam angle error σ

2
θj
must be a priori

given from the previously estimated LRF’s noise model.
The variances and the covariance of the line parameters can also

be estimated with the already-described method resulting from
orthogonal LSQ. The uncertainties at the input of this method are
the variance of the LRF’s distance-measurement error σ 2dj and the
variance of the LRF’s beam-angle error σ 2θj . Let us consider the case
with zero standard deviation σθj = 0 rad (Table 4) and that σdj
is not a priori known from the LRF’s noise model for the sake of
comparison of both methods. σ 2dj (Fig. 3) can then be estimated out
of the line-segment points as follows

σ 2dj =
1
n− 1

n−1∑
j=1

(
ds(j)−

√
xp(j)2 + yp(j)2

)2
, (31)

where σ 2dj is the same for all the LRF’s distances ds(j) that
correspond to the line-segment points.
In Tables 4 and 5 the results of the experiments are shown

where the standard deviations and the covariance of the line
parameters r and ψ were calculated with the method resulting
from classic LSQ as σr =

√
var(r), σψ =

√
var(ψ) and cov(r, ψ)

(20) and with the method resulting from orthogonal LSQ (21) as
σr =

√
C∗(1, 1), σψ =

√
C∗(2, 2) and cov(r, ψ) = C∗(2, 1).

All three environment line segments (Table 3) and both noise
cases were considered. The experiment to calculate these two
variances and the covariance for each set of line-segment points
was repeated many (Ntr = 10 000) times with the same data sets
of line-segment points and variances σ 2dj and σ

2
θj
of the LRF’s noise

model as in the experiments for calculating the reference standard
deviations σru , σψu and the covariance cov(ru, ψu). The variances
σr and σψ and the covariance cov(r, ψ) are different in each
experiment due to the influence of the LRF’s distance- and angular-
measurement noise (26).
To represent the accuracy of the methods resulting from

cLSQ and oLSQ the mean and standard deviation of the Ntr =
10 000 calculated standard deviations σr and σψ and covariances
cov(r, ψ) are shown in Tables 4 and 5, where standard deviations
std(σr), std(σψ ) and std(cov(r, ψ)) are calculated according to
means mean(σr), mean(σψ ) and mean(cov(r, ψ)), respectively.
mean(.) and std(.) of the variances σr and σψ and covariances
cov(r, ψ) in Tables 4 and 5 refer to the case where var(y(j)) (cLSQ
method) and σdj (oLSQ method) were estimated from the LRF’s
points during each experiment. a-priori : mean(.) and a-priori :
std(.) of the variances σr and σψ and covariances cov(r, ψ) in
Tables 4 and 5 refer to the case where var(y(j)) (cLSQ method)
and σdj (oLSQ method) were estimated from the a-priori known
variances of the LRF’s noise model σ 2dj and σ

2
θj
. Since the variance

σ 2dj (31) (calculated from the line-segment points) can only be
estimated from the LRF’s points in the noise-free case with σθj =
0 rad, fields in Table 5 which correspond to the orthogonal LSQ
method and the noise-case with σθj = 0.0017 rad are empty.
If the variance var(y(j)) (classic LSQ, both noise cases) and

the variance σ 2dj (orthogonal LSQ, noise case σθj = 0 rad) are
estimated from the line-segment points, the standard deviations
of the line parameters σr , σψ , and the covariances cov(r, ψ)
are close to the corresponding reference standard deviations σru ,
σψu and to the corresponding reference covariance cov(ru, ψu).
The accuracy of the variances var(y(j)) and σ 2dj depends on the
number of line-segment points from which they are estimated.
Consequently, the accuracy of the standard deviations σr , σψ , and
the covariances cov(r, ψ) also depends on the number of line-
segment points. A more accurate variance of the LRF’s distance-
measurement error σ 2dj and variance of the laser–beam angular
error σ 2θj can be a priori given from the previously estimated LRF’s
noise model. The variance var(y(j)) for the method resulting from
classic LSQ can then also be more accurate if estimated from
the variances σ 2dj and σ

2
θj
(28). In experiments to estimate the
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standard deviations σr , σψ , and the covariances cov(r, ψ) the a-
priori known variances σ 2dj and σ

2
θj
were set to the true variances

(30 mm)2 and (0.0017 rad)2 or 0 rad2, respectively. This results
in the σr , σψ and cov(r, ψ) estimated with the method resulting
from classic and orthogonal LSQ being closer to the corresponding
reference standard deviations ru, ψu and to the corresponding
reference covariance cov(ru, ψu) compared to the case where σ 2dj
(oLSQ, σ 2θj = 0 rad

2) and var(y(j)) (cLSQ) were estimated from the
line segment points. The accuracy of the standard deviations σr , σψ
and the covariance covar(r, ψ) of each method is in the noise case
with σθj = 0.0017 rad (Table 5) practically on the same level as in
the noise-free case with σθj = 0 rad (Table 4).

4. Conclusion

This paper has proposed a method for estimating the output-
noise covariance matrix in the EKF-based localization of a mobile
robot equipped with a LRF sensor in an environment described
with line segments. To solve the localization or SLAM problem
the parameters and their covariance matrices must be calculated
in each environment scan for all the observed environment line
segments. The output-noise covariance matrix of the EKF is
composed of the covariances of the environment-line parameters.
Themethod for estimating these covariances was derived from the
classic LSQ method and has been proven to be computationally
more efficient than themethod resulting from orthogonal LSQ. The
use of classic LSQ instead of orthogonal LSQ reduces the number
of computations in the process of estimating the parameters and
their covariance matrices of all the observed environment line
segments by up to about 5.6 times in the noise case with nonzero
angular variance and by up to about 4.7 times in the noise case
with zero LRF’s angular variance. Since a SLAM algorithm is the
extension of a localization algorithm, the reduction of the number
of computations (if using classic LSQ instead of using orthogonal
LSQ) would in the SLAM algorithm be exactly the same (from the
absolute point of view) as in the localization algorithm. SLAM and
localization are both real time algorithms, but SLAM is known
as a computationally much more complex algorithm than the
localization algorithm. Therefore, the computational efficiency of
the same algorithms that are used in a SLAM and a localization
algorithm plays a more important role in the SLAM than in the
localization algorithm.
A statistical analysis of the accuracy of both methods using the

simulated measurements of the LRF sensor was also performed.
The accuracy of the covariances of the line parameters estimated
with the method resulting from classic LSQ depends on the
number of line-segment points from which these covariances are
estimated. The accuracy of the method resulting from orthogonal
LSQ depends on the accuracy of the variance of the LRF’s distance-
measurement error and the variance of the laser–beam angle error
which must be a priori given from a LRF’s noise model. At each
method the estimated standard deviations and covariance of the
calculated line parameters were in the simulated experiments
close to the reference standard deviations and covariance. In
the simulated experiments the accuracy of each method is in
the noise case with nonzero LRF’s angular variance practically
on the same level as in the noise case with zero LRF’s angular
variance. This paper has focused on solving the problem ofmobile-
robot localization. Considering all the benefits of the presented
solution, the localization algorithmwill be extended into the SLAM
algorithm in future work.
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